Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds

نویسندگان

  • P. GILKEY
  • S. NIKČEVIĆ
چکیده

For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPLETE k-CURVATURE HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS 0-MODELED ON AN INDECOMPOSIBLE SYMMETRIC SPACE

For k ≥ 2, we exhibit complete k-curvature homogeneous neutral signature pseudo-Riemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). The curvature tensor of these manifolds is modeled on that of an indecomposible symmetric space. All the local scalar Weyl curvature invariants of these manifolds vanish. Dedicated to Professor Sekigawa on his 60th bir...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Flat Homogeneous Pseudo-Riemannian Manifolds

The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...

متن کامل

ISOMETRY GROUPS OF k-CURVATURE HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS

We study the isometry groups of a family of complete p + 2curvature homogeneous pseudo-Riemannian metrics on R which have neutral signature (3 + 2p, 3 + 2p), and which are 0-curvature modeled on an indecomposible symmetric space.

متن کامل

ar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS

We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005